Освальд Шпенглер о «смысле чисел»

(из книги «Закат Европы)

 

      В качестве примера того, как душа стремится осуществить себя в образе своего окружающего мира, того, следовательно, насколько ставшая культура является выражением и отражением идеи человеческого существования, я беру число, лежащее в качестве непосредственного данного элемента в основе всякой математики. Я делаю это в особенности на том основании, что всякая математика, доступная во всей своей глубине только очень немногим, занимает совершенно исключительное положение между остальными созданиями человеческого духа. Она является наукой строгого стиля, так же как и логика, но только более всеобъемлющей и с более богатым содержанием; в отношении необходимости направляющего вдохновения и больших конвенционных форм в ее развитии, она является, наряду с пластикой и музыкой, настоящим искусством; наконец, она является метафизикой высшего порядка, как это доказывают Платон и в особенности Лейбниц. До настоящего времени всякая философия возрастала в связи с соответствующей математикой. Число — это принявшая образ идея причинной необходимости, подобно тому, как представление о Боге, создаваемое заново каждой культурой из своих глубин, является принявшей образ идеей о необходимости судьбы. В этом смысле существование чисел можно именовать тайной, и религиозное мышление всех культур испытывало на себе их влияние.

 

*  *  *

 

      Готические соборы и дорические храмы — это окаменевшая математика.

 

*  *  *

 

      Число в себе не существует и не может существовать. Существует несколько миров чисел, потому что существует несколько культур. Мы встречаем индийский, арабский, античный, западноевропейский числовой тип, каждый по своей сущности совершенно своеобразный и единственный, каждый являющийся выражением совершенно особого мирочувствования, символом отграниченной значимости, также и в научном отношении принципом распорядка ставшего, в котором отражается глубокая сущность именно этой, и никакой другой души, той, которая является центральным пунктом как раз соответствующей, и никакой другой культуры. Таким образом существует несколько математик. Несомненно, архитектоническая система эвклидовой геометрии совершенно отличается от картезианской, анализ Архимеда нечто совершенно иное, чем анализ Гаусса, не только по языку форм, целям и приемам, но по своей сути, по первоначальному феномену числа, научное развитие которого они собой представляют. Это в духе и духом воспринятое число, это переживание предельности, с внутренней необходимостью получившее через число наглядность и принявшее форму, а вместе с тем вся природа, весь пространственный мир, образ которого возник через это самопроизвольное отграничение и трактование которого доступно каждый раз только математике определенного рода, — все это говорит не о человеческой стихии вообще, но каждый раз о вполне определенной.

      Стиль каждой возникающей математики зависит, следовательно, от того, в какой культуре она коренится и какие люди о ней размышляют. Потому что число предшествует рассудочному уму, а не наоборот. Числа суть творческие, а не творимые сущности. Ум может привести к научному раскрытию формальных возможностей, может применять их и достигать высочайшей зрелости в их применении; но изменить их он совершенно не в силах. В ранних формах орнаментики и архитектуры, в дорической колонне и готике соборов уже осуществлена идея эвклидовой геометрии и счисления бесконечно малых, еще за целые столетия до того, как родились первые математики соответствующих культур.

      Глубокое внутреннее переживание, настоящее пробуждение собственного я, делающее ребенка высшим человеком, членом той культуры, к которой он принадлежит, отмечает начало числового и словесного понимания. Только с этого момента начинается сознание предметов, как чего-то во всех отношениях ограниченного и легко отличаемого, возникают точно определимые свойства, понятия, причинная необходимость, система окружающего мира, форма вселенной, законы вселенной — "закон" по своей природе всегда ограничен, неподвижен, подчинен числам, — и вдруг родится ощущение того, что собственно означают числа, в формах ли пластического искусств или математического знания. Понятно, что они еще закрыты для первобытного человека и для ребенка и что — говоря биографически или исторически — решительная эпоха наступает только в тот момент, когда осознанный в его значении акт счисления, измерения, рисования и формирования породит совершенно новый мир, возникший из вновь вскрытой внутренней жизни. Это переживание, с проявлением которого возникает большой стиль, выделяет культуры и типы души как особые индивидуумы из примитивной человеческой стихии.

 

*  *  *

 

      Будь математика просто наукой, подобно астрономии и минералогии, ее предмет было бы легко определить. Но по отношению к ней никто не может и не мог этого сделать. Если мы, западноевропейцы, насильственно распространя- ем наши числовые понятия на то, что занимало математиков в Афинах или Багдаде, все же остается несомненным, что тема, цель и методы науки, носящей то же название, были там совсем иными. Не существует одной науки математики, есть многие математики. То, что мы называем историей математики, понимая под этим прогрессирующую проверку единственного и неизменного идеала, является в действительности, если только устранить обманчивую картину внешних явлений истории, множественностью законченных в себе, независимых процессов, постоянным нарождением новых, усвоением, переработкой и устранением чуждых миров форм, чисто органическими, ограниченными известной длительностью расцветом, зрелостью, увяданием и смертью. Не следует впадать в ошибку. Аисторический греческий дух создал свою математику из ничего, исторически настроенный дух Запада, обладавший уже заимствованной античной наукой, — усвоенной внешне, а не внутренне, — принужден был приобретать собственным путем кажущихся изменений и усовершенствований, в действительности же путем разрушения неадекватной ему эвклидовской. Одно было сделано Пифагором, другое Декартом. Оба акта в глубине идентичны.

      Равным образом не подлежит сомнению сродство языка форм математики и языка форм соседних больших искусств. Целью всей математики является законченная в себе система положений, являющая собой синтетический априорный распорядок всего неподвижного, протяженного, т.е. то же непрерывное искание синтеза, которое мы встречаем в проблеме формы каждого изобразительного искусства, в борьбе каждого отдельного художника в своей области за техническое мастерство. Чувство формы скульптора, художника и композитора по существу является математическим. В аналитической и начертательной геометрии XVII века вскрывается тот же распорядок, который вызывает к жизни, охватывает и стремится насквозь проникнуть в современную ей инструментальную музыку (фугированного стиля) и родственную ей масляную живопись, первую при помощи правил контрапункта, этой геометрии звукового пространства, вторую при помощи известной одному только Западу перспективы, этой почувствованной геометрии пространства картины. Это есть то, что Гёте называет идеей, образ которой непосредственно созерцается в чувственном, в то время как собственно наука не созерцает, но только наблюдает и разлагает. Но математика идет дальше, чем наблюдение и разложение. В минуты возвышения она действует интуитивно, а не путем абстрагирования. Гёте принадлежит глубокое слово, что математик постольку является совершенным, поскольку он ощущает в себе красоту истины. Здесь мы чувствуем, как близка тайна феномена чисел тайне художественной формы, которая также имеет своей целью многозначительное отграничение, прекрасную меру, уравновешенное величие, строгие взаимоотношения, гармонию, короче говоря, совершенный распорядок чувственного. Таким образом, прирожденный математик становится в один ряд с великими мастерами фуги, резца и кисти, которые также стремятся одеть в символы, осуществить и сообщить другим тот великий распорядок всех вещей, который рядовой современник их культуры носит в себе, не умея в действительности им овладеть. Таким образом царство чисел становится интуитивным отображением мировой формы, наряду с царством звуков, линий и красок. Поэтому слово "творческое" в приложении к математике имеет большее значение, чем в приложении к собственным наукам. Ньютон, Гаусс, Риман были художественными натурами. Стоит только вспомнить как внезапно их осеняли их великие концепции. "Математик, — говорит старик Вейерштрас, — в котором вместе с тем нет частицы поэта, не может быть совершенным математиком".

      Итак, математика — тоже искусство. У нее есть свои стили и периоды стилей. В противоположность мнению непосвященного или философа, поскольку последний судит как непосвященный, она по своей сущности не неизменна, но, как и всякое искусство, подвержена от эпохи к эпохе незаметным изменениям. Следовало бы при изображении развития больших искусств постоянно иметь в виду современную математику, что оказалось бы далеко не бесплодным. Подробности глубоких взаимоотношений между направлениями в теории музыки, начиная с Орландо Лассо, и фазами развития теории функции никогда не были предметом исследования, однако эстетика могла бы почерпнуть отсюда гораздо больше поучительного, чем из всякой "психологии". Все великие математики, начиная с Ферма, Паскаля и Декарта (1630 г.), были трансцендентальными аналитиками, все же древние, начиная с Пифагора (540 г.) — зрительно-телесно мыслящими натурами. Нужно ли еще раз указывать на тесную связь этих дарований с начинающимся расцветом чистой инструментальной музыки в первом случае, и ионической мраморной скульптуры — во втором? Античная математика, вначале почти исключительно планиметрическая, в своем развитии от Пифагора до Архимеда, обнаруживает тенденцию к стереометрическому пониманию всего числимого. Этому соответствует тенденция плоской живописи аттическо-коринфского стиля к полной пластике через промежуточную стадию рельефа, наложенного на плоскость. Статуя возникла частью из фигурно-рельефообразно-обделанной колонны (Гера Херамия), частью из деревянных или бронзовых пластинок, служивших отделкой стены (Артемида Никандры). И дерево и порос обрабатывались при помощи резца, однако только ваяние из мрамора при помощи долота вполне отвечало художественному чувству создания тела. Соответствующий процесс наблюдается и на Западе. В то время, как так называемая геометрия превращается в анализ чистого пространства, из которого шаг за шагом устраняется все оптическое — как далеко, например, понятие координат у Декарта ушло вперед по сравнению с Ферма — одновременно и инструментальная музыка приобретает новые средства выражения. С 1520 г. изобретенная в Верхней Италии скрипка начинает заменять лютню. Фагот делается известным с 1525 г. В Германии в течение XVI и XVII столетий орган развился в покоряющий пространство инструмент. Монтеверди (1567-1643), положивший изобретением доминантсепт-аккорда начало собственной хроматики, имел в своем распоряжении первый настоящий оркестр, а в 1630 г. в лице Фрескобальди появляется первый большой виртуоз на органе. Рядом с analysis situs, этим венцом творчества Лейбница, стоит мощная символика пространства последних созданий Рембрандта, умершего в 1669 г., а именно: автопортрета в Мюнхене, Дармштадтского Христа и Евангелиста Матфея.

      Еще одно обстоятельство, несомненно, отличает стремление к форме всякой математики от чисто научных целей любой физики и химии и сближает ее с изобразительными искусствами: элементы ее, а именно неподвижные числа, независимо от того, имеют ли они наглядный или трансцендентальный характер, являются не какой-либо эмпирической действительностью, а чистыми формами протяженного, как орнаментальные линии или музыкальные гармонии, а приемы ее, следовательно, говоря словами Канта, синтетичны, или, говоря художественным языком, представляют собой композицию, в каковой художник подчинен высшей необходимости — априорному Канта. Пусть в популярных частях любой математики это менее заметно; но числовые образования высшего порядка, к которым каждая из них восходит своими отличными путями, как-то: индийская децимальная система, античные группы конусных сечений, простых чисел и правильных полиэдров, на Западе — числовые тела, пространства многих измерений, в высшей степени трансцендентальные образования учений о трансформации и о множествах, группа неэвклидовских геометрий — все они уже не имеют исключительно рассудочного происхождения, и для полного понимания их глубоких, вполне метафизических оснований необходим известный род визионерного ясновидения. Здесь дело сводится к внутреннему переживанию, а не только к познанию. Только с этого пункта начинается большая символика чисел. Эти формы, родившиеся во имя определенной культуры в душе великих мастеров, как выражение глубочайших тайн ее мироощущения открывают посвященному как бы первооснову его существования. Нужно, чтобы эти создания действовали на нашу душу, как внутренность соборов, как стихи ангелов из пролога "Фауста" или кантаты Баха, для чего необходимы счастливые и редкие минуты. Только тот, кто способен на это — а зрелые умы всегда будут редки — поймет, почему Платон называл вечные идеи своего космоса числами.

 

*  *  *

 

      Теперь становится понятным, в чем отличие одной математики от другой, в особенности античной от современной. Согласно всему своему мирочувствованию зрелое античное мышление могло видеть в математике только ученье о соотношении величин, мер и форм физических тел. Когда, руководствуясь этим ощущением, Пифагор изрек свою основную формулу, для него число было именно оптическим символом, не формой вообще или абстрактным отношением, но разграничивающим признаком ставшего, поскольку последнее проявляется в чувственно обозримых подробностях. Вся античность без исключения воспринимает числа как единицы меры, как величины, длины и поверхности. Другой род протяженности недоступен ее представлению. Вся античная математика в основе своей есть стереометрия. Эвклид, живший в III веке и приведший всю систему к завершению, говоря о треугольнике, с внутреннею необходимостью представляет себе поверхность, ограничивающую тело, но никогда не систему трех пересекающихся прямых линий или группу трех точек в пространстве трех измерений. Линию он определяет названием "длина без ширины" (μηκος απλτες). При нашем способе выражаться это определение показалось бы убогим. В границах античной математики оно превосходно.

      И наше западное число, в противность мнению Канта и даже Гельмгольца, не развилось из "априорной формы созерцания времени", но в качестве распорядка однообразных величин представляет собой нечто специфически пространственное. Время, как это станет понятным на основании дальнейшего, не имеет ничего общего с математическими предметами. Числа принадлежат исключительно сфере протяженного. Но имеется столько же возможностей и, следовательно, необходимостей систематически изобразить протяженность, сколько имеется культур. Античное число не есть мышление о пространственных отношениях, но мышление об отграниченных для телесного глаза, осязаемых единицах. Поэтому античность — это вытекает с полной необходимостью — знает только естественные (положительные, целые) числа, которые среди многих в высшей степени абстрактных родов чисел западной математики, как-то: комплексных, гиперкомплексных, неархимедовских и иных систем, занимают обычное, ничем не выделяющееся положение.

      Поэтому представление об иррациональных числах, или, по нашему начертанию, о бесконечных десятичных дробях, осталось для греческого духа совершенно недоступным. Эвклид говорит — и следовало бы точнее принимать смысл его слов, — что несоизмеримые расстояния относятся между собой "не как числа". Действительно, в законченном понятии иррациональных чисел лежит полное отделение понятия числа от понятия величины; причина этому та, что иррациональное число, например π, никогда не может быть отграничено или точно выражено при помощи известного расстояния. Из этого следует, что, например, в представлении об отношении стороны квадрата к его диагонали, античное число, представляющее собой, собственно, чувственную границу, замкнутую величину, и ничто иное, соприкасается с совершенно иной числовой идеей, в самой своей сути чуждой античному мирочувствованию и поэтому жуткой, как будто бы речь идет о том, чтобы открыть опасную тайну собственного существования. На это указывает позднегреческий миф, согласно которому тот, кто впервые извлек рассмотрение иррационального из сокровенности и предал его гласности, погиб при кораблекрушении, "так как невысказываемое и безобразное должно постоянно оставаться сокровенным". Кто поймет страх, лежащий в основе этого мифа — тот же страх, который постоянно удерживал греков зрелого времени от расширения их крохотных городов-государств в политически организованные страны, от устройства широких проспектов и аллей с далеким видом и рассчитанным завершением, от вавилонской астрономии с ее устремлением в бесконечные звездные пространства, от преодоления границ Средиземного моря и исследования путей, давно открытых кораблями египтян и финикиян, эту глубокую метафизическую боязнь перед преодолением осязательно-чувственного и настоящего, при помощи которого античное существование окружило себя как бы защитной стеной, за пределами которой лежало что-то жуткое, бездна и первоисточник в известной мере искусственно созданного и утвержденного космоса, — кто поймет это чувство, тому станет понятным основная сущность античного числа, являвшего собой меру в противоположность неизмеримому, а также глубокий религиозный этос, выражающийся в этом ограничении. Гёте в качестве художника с большой страстностью усвоил себе, по крайней мере в своих естественно-исторических исследованиях, эту точку зрения; отсюда его, можно сказать, исполненная страхом полемика против математики, инстинктивно направленная главным образом, чего еще никто как следует не понял, против всей неантичной математики и лежавшего в основе современного ему естествознания счисления бесконечно малых.

      Античная религиозность с возрастающей определенностью сосредоточивается на чувственно непосредственных — связанных с местом — культах, вполне отражающих это наделенное образом, всегда близкое, божество. Абстрактные, в бесприютных пространствах мышления витающие догматы всегда оставались ей чуждыми. Культ и догмат относятся друг к другу, как статуя к органу в соборе. В Эвклидовой математике, несомненно, остается что-то культовое. Достаточно припомнить учение о правильных многогранниках и их значение для эзотерики платоновской школы. Этому соответствует, с другой стороны, глубокое сродство анализа бесконечности начиная с Декарта с современной ему догматикой, устремляющейся к чистому, освобожденному от всяких чувственных отношений деизму. Вольтер, Лагранж и д'Аламбер — современники. Из недр античного духа принцип иррационального, т.е. разрушение статуарного ряда целых чисел, этих представителей совершенного в себе миропорядка, воспринимали как некоего рода святотатство против божества. У Платона в "Тимее" это чувство выступает с полной очевидностью. Действительно, с превращением прерывающегося числового ряда в непрерывный, оказывается под вопросом не только античное понятие числа, но и весь античный мир. Становится понятным, что для античной математики совершенно невозможны легко укладывающиеся в наше представление отрицательные числа, не говоря уже о нуле как числе — обладающем для индийской души, впервые создавшей это понятие, вполне определенным метафизическим привкусом. Отрицательные величины не существуют. Выражение: (-2) · (-3) = + 6 не является ни наглядным, ни представлением величины. На + 1 кончается ряд величин. В графическом изображении отрицательных чисел (+3--, +2--, +1--, 0--, -1--, -2--, -3), начиная с нуля расстояния вдруг становятся положительными символами чего-то отрицательного. Они обозначают что-то, но уже не существуют реально. Отрицательные числа не величины, но что-то такое, на что величины только намекают. Осуществление этого акта отклоняется от линий направления античного числового мышления.

      Все родившееся из античного духа становится действительностью только путем пластического отграничения. То, что нельзя нарисовать, — не "число". Платон, Архит и Эвдокс говорят о плоскостных и телесных числах, имея в виду нашу вторую или третью степень, и, само собой разумеется, что понятие высших целых степеней для них не существует. Четвертая степень для являющегося по существу своему пластическим чувства, которое тотчас же истолкует ее как протяженность в четырех измерениях, становится бессмыслицей. Постоянно встречающееся в наших формулах выражение е-ix, или даже применявшиеся уже в XIV столетие Оресмом обозначение 5Ѕ показалось бы античному чувству полным абсурдом. Эвклид называет множители произведения сторонами (πλευραί). В древности оперируют с дробями — конечными, само собою разумеется — прибегая к исследованию отношения двух отрезков прямой линии, выражающихся в целых числах. Именно поэтому идея числа нуль тут совершенно не может проявиться, так как графически она бессмысленна. Пусть не возражают, исходя из привычного способа мышления, что это только "первоначальная ступень" в развитии математики. Внутри того мира, который античность создала вокруг себя, античная математика есть нечто законченное. Незаконченной она представляется только нам. Вавилонская и индийская математики давно уже усвоили в качестве существенных элементов своего мира чисел многое из того, что с точки зрения античного числового чувства являлось бы бессмысленным, и многие греческие мыслители знали об этом. Единая математика, повторяем это еще раз, есть иллюзия. Действительно только то, что адекватно ей, символически значительно для собственной душевной жизни. Только это представляется логически необходимым, все остальное невозможным, ошибочным, бессмысленным, или, как мы привыкли, руководясь гордостью исторического ума, называть "примитивным". Современная математика, одно из высших достижений западного духа — и во всяком случае "истинная" только для нас — показалась бы Платону смешным и бесплодным заблуждением и уклонением на пути к достижению "истинной", конечно, в античном смысле математики, и трудно себе даже представить, сколько великих концепций чуждых культур погибло по нашей вине, так как мы, исходя из нашего способа мышления и заключенные в его границы, не могли их усвоить или, что то же, считали их ложными, излишними и бессмысленными.

 

*  *  *

 

      Подобно тому, как античная душа в лице Пифагора около 54 г. выработала свою концепцию аполлоновского числа как измеримой величины, западноевропейская душа в лице Декарта и его современников (Паскаля, Ферма, Дезарга) в точно соответствующую эпоху открыла идею числа, родившуюся из страстного фаустовского стремления к бесконечному. Число как чистая величина, привязанная к телесному наличию отдельных вещей, имеет параллелью число как чистое отношение. Если определять античный мир, космос, исходя из его внутреннего требования видимой границы, как исчисляемую сумму материальных предметов, то, со своей стороны, наше мирочувствование находит свое выражение в образе бесконечного пространства, в котором все видимое воспринимается как нечто обусловленное по отношению к чему-то безусловному, или даже, пожалуй, как действительность низшего порядка. Его символом является решающее, ни в какой другой культуре не встречающееся понятие функции. Функция не есть какое-то расширение одного из ранее имевшихся числовых понятий; она является их полным преодолением. Таким образом, не только эвклидовская, т.е. общечеловеческая популярная геометрия, но и архимедовская сфера элементарного счисления, т.е. арифметика, перестают существовать для действительной обладающей значением математики Западной Европы. Остается один отвлеченный анализ. Для античного человека геометрия и арифметика были научными комплексами высшего порядка, причем и та и другая были наглядными и обращались с величинами при помощи графических и счетных приемов; для нас они только практические пособия повседневной жизни. Сложение и умножение, эти два античных метода счисления величин, родственных графическому конструированию, совершенно исчезают в бесконечности функциональных процессов. Так, например, степени, по своему принципу являющиеся первоначально просто числовыми обозначениями определенных групп умножений (для множителей одинаковой величины), при посредстве нового символа показателя степени (логарифм) и способа его применения в комплексных, отрицательных и дробных формах становятся совершенно отрешенными от понятия величины и переносятся в трансцендентальный мир отношений, который для грека, знавшего только две целые степени в качестве изображения поверхности и тела, является совершенно недоступным…  

      Все глубокомысленные создания, быстро следующие одно за другим, начиная с эпохи Ренессанса, как-то: мнимые и комплексные числа, введенные Карданом уже в 1550 г., бесконечные ряды, получившие благодаря великому открытию закона бинома Ньютоном в 1666 г. точное теоретическое обоснование, открытие логарифмов в 1610 г., дифференциальной геометрии, определенного интеграла Лейбницем, открытие множества как новой числовой единицы, намеченное уже Декартом, новые процессы, как-то: неопределенного интегрирования, развертывание функций в ряды, даже в бесконечные ряды других функций, — все они являются столькими же победами над укоренившимся в нашей душе популярно- чувственным ощущением чисел, которое нужно еще было преодолеть в духе новой математики, имевшей своей целью осуществить новое мирочувствование. Не было еще ни одной другой культуры, которая относилась бы с равным уважением к созданиям иной, давно погибшей культуры и давала такой простор в своей науке ее влияниям, как это делала западноевропейская по отношению к античной. Прошло много времени, пока мы нашли в себе смелость думать своим умом. На первом плане всегда лежало стремление во всем сравняться с античностью. Однако каждый шаг в этом направлении был удалением от намеченного идеала. Поэтому история западноевропейской науки представляет собою картину непрерывной эмансипации от чуждого и освобождения, к которому никто не стремился, но которое вынужденно вырастало из глубины бессознательного. Таким образом, развитие новой математики сложилось в тайную, долгую, наконец, победоносную борьбу против понятия величины.

 

*  *  *

     

      Теперь представляется возможным обозреть изначальную противоположность античной и западной духовной стихии. Во всей картине истории высшего человечества не найдется ничего более внутренне друг другу чуждого. Именно потому, что противоположности соприкасаются и, может быть, указуют на общность сокровеннейших глубин существова- ния, в западноевропейской фаустовской душе мы находим это странное искание и стремление к идеалам аполлоновской души, которую она одну из всех понимала и чья неизменная преданность чувственно-чистой действительности возбуждала ее зависть.

      Эту, не поддающуюся более точному определению словами, душевную противоположность осуществили во внешнем мире ставшего, ограниченного, преходящего две исторические единицы, а именно античная и западная культуры, из которых одна возникла в позднемикенскую эпоху, другая в эпоху саксонских императоров, и обе закончили свое развитие в лице Аристотеля и Канта, Платона и Гёте, Фидия и Бетховена, Александра и Наполеона.

      Теперь также становится понятным все значение символики, нашедшей, пожалуй, свое самое непосредственное выражение в мире чисел обеих математик, но область которой распространяется гораздо дальше. Мы видим, что математика говорит на одном языке со всеми сопутствующими искусствами и вообще со всеми созданиями повседневной жизни, на языке форм, в котором одновременно и проявляются и скрываются глубочайшие возможности душевной стихии.